THE SYNTHESIS, CRYSTAL STRUCTURE AND SOME PROPERTIES OF [NpO₂(ReO₄)(Phen)(H₂O)₂]

A. N. Budantseva¹, A. M. Fedosseev¹, G. B. Andreev¹, M. Yu. Antipin²

¹Institute of Physical Chemistry, RAS

²A. N. Nesmeyanov Institute of Organoelement Compounds, RAS

The pentavalent neptunium perhenates NpO₂ReO₄ and NpO₂ReO₄ '6H₂O are discussed in [1], but their crystal structure is not determinated to the present day. Although structural investigations of Np(V) compound with various inorganic anions are rather extensive, the currently available data are not sufficient to predict the possibility of ReO₄ ion coordination to the Np atom. It is known that ClO₄- ion, which is isoelectronic and isostructural to ReO₄ ion, is not enter the coordination sphere of central atom in the solid compounds of uranium and neptunium UO₂(ClO₄)₂'7H₂O [2] [NpO₂(H₂O)₄]ClO₄ [3], [NpO₂(Urea)₅]ClO₄'H₂O [4], (NpO₂)₂(DMSO)₇(ClO₄)₂'3H₂O [5]. This raises the question of whether the formation of solid Np(V) perhenate is possible. The resolution of the issue can also be useful for prediction of Np(V) interaction with TcO₄⁻.

The crystals of $[NpO_2(ReO_4)(Phen)(H_2O)_2]$ (I) for X-ray analysis were chosen from a solid phase obtained by mixing solutions of NpO_2ReO_4 (10^{-2} mol/l) and Phen'H₂O (0.1 mol/l) in ethanol followed by the evaporation at a temperature lower than 20° C. NpO_2ReO_4 was prepared by the dissolution of NpO_2OH in HReO₄ and the evaporation at a temperature lower than 40° C.

Crystallographic data were obtained at low temperature (110K) on Bruker SMART single-crystal diffractometer using graphite monochromated MoK α radiation. The collection of data was carried out up to $2q_{max}=60^{\circ}$ measured for $-10 \le h \le 10$, $-15 \le k \le 15$, $-29 \le l \le 29$. The structure was solved by direct method. All non-hydrogen atoms were refined with anisotropic thermal parameters by a full-matrix least-squares procedure on F². Hydrogen atoms of the 1,10-phenanthroline were fixed in the ideal positions, while hydrogen atoms of water molecules were not localized. All calculations were performed using the SHELXTL PLUS program package. Crystallographic data for compound I are given in Table 1.

7.288(1)
10.513(2)
20.936(4)
96.939(5)
$P2_1/c$
1592.2(5); 4
3.052
5132
3018
217
0.058, 0.126

Table 1. Crystallographic data.

The crystal structure **I** consists of complex $[NpO_2(ReO_4)(Phen)(H_2O)_2]$ molecules (Figure 1). The coordination polyhedron of the Np atom is pentagonal bipyramid which equatorial positions occupied by two nitrogen atoms of 1,10-phenanthroline and oxygen atoms of monodentate ReO_4^- anion and two water molecules.

Figure 1. The crystal structure of **I**.

The distances between neptunium atom and oxygen atoms of water molecules are equal to 2.445(8) and 2.532(8) Å, the Np-O (ReO₄) bond length is 2.457(8) Å. The Np-N distances are significantly longer and equal to 2.641(9) and 2.59(1) Å. The maximum deviation of atoms from mean equatorial plane is equal to 0.135 Å. The NpO₂ group is nearly linear and symmetric. The O-Np-O angle is equal to 178.0(3)°, the Np-O distances have unusual large values (1.902(9) and 1.907(10) Å).

The ReO_4^- anion acts as monodentate ligand. The coordination polyhedron of Re atom is the tetrahedron. The O-Re-O angles lie in the range $108.2(5)-112.1(4)^\circ$. The Re-O distances are equal to 1.695(9)-1.711(10) Å for the terminal atoms, and the length of bridging Re-O bond is 1.729(8) Å.

The phenanthroline molecule acts as bidentate chelate ligand and form pentagonal ring with Np atom. The N-C and C-C bonds lie in the ranges 1.34(2)-1.36(2) Å and 1.36(4)-1.45(4) Å, respectively.

The NIR and IR spectra of **I** were obtained using Shimadzu UV3100 and Specord M80 spectrophotometers, respectively. Samples were prepared by pressing triturated mixture of the compound with molten NaCl.

In the NIR spectrum of **I** the intence absorption band of Np(V) at 985 nm corresponds to the f-f electron transition.

The IR spectrum contains a large number of absorption bands, some of which are overlapped. In the Table 2 the probable spectral band assignments are presented.

v(HOH)	3448, 3340, 3260
$\delta(H_2O)$	1670, 1664, 1640
v(CC), v(CN)	1715, 1692, 1586, 1574, 1558, 1536, 1520, 1488, 1466, 1446, 1434
v(CH)	2970
γ(CH)	1148, 1100, 870, 864, 728, 720, 668, 624
$v_{s}(\text{ReO}_{4})$	948
$v_{as}(\text{ReO4})$	920, 900
$v_{as}(NpO_2)$	816, 804

Table 2. IR spectral band assignments (cm⁻¹).

REFERENCES.

- 1. J. P. Silvestre, M. Pages, W. Freundlich // C.r.Acad.sci. 1971. V. 272. P. 1808
- 2. N. W. Alcock, C. Esperas // J. Chem. Soc. Dalton Trans. 1977. P. 893
- M. S. Grigoriev, N. A. Baturin, A. A. Bessonov, N. N. Krot // Radiokhimiya. 1995. V. 37.
 P.15
- 4. M. S. Grigoriev, A. Yu. Garnov, N. N. Krot // 27^{emes} Journess des Actinides. Final Program and Abstracts. Dijon. France. 1997. P. 183
- 5. I. A. Tcharushnikova, N. N. Krot, Z. A. Starikova // Radiokhimiya. 2000. V. 42. P.397