

- Tunable polarization
- Partial coherence

ISTR 2011 Moscow

Characteristics of the beamline									
Monochromators:	Type Si(111) Si(220) Monochromator is dr	Energy interval, keV 5-19 8-35 iven by stepper motors (1"	ΔΕ/Ε 10 ⁻⁴ 10 ⁻⁴ discrete steps)						
Detectors:	 Ionization chambers + KEITHLEY 6487 Scintillation counter with Nal(TI) crystals Linear gas-filled detector COMBI-1 ("Burevestnik", St. Petersburg) 2D-detector ImagingPlate (FujiFilm BAS2025) Semiconducting detector (pure Ge) 								
Beam dimensions:	Maximum Minimum Step of translations	3×3 мм² 10×10 μm² ~4 µm							
Photon flux:	~ 0.5×10 ⁸ photons/m	m ² with energy bandwidth 2	Δλ/λ=10 ⁻⁴						
ISTR 2011 Moscow									

$$\chi(k) = \sum_{j} \frac{S(k)N_{j}}{kr_{j}^{2}} |f_{j}(k,\pi)| \sin(2kr_{j}+\varphi_{j}(k))e^{-2\sigma_{j}^{2}k^{2}}e^{-2r_{j}/\lambda(k)}$$

$$\chi \text{ - normalized background-subtracted EXAFS-signal}$$

$$k - \text{ photoelectron vector modulus } (=2\pi/\lambda)$$

$$S - \text{ Extrinsic loss coefficient } (0.7-1.0)$$

$$N - \text{ coordination number in the j-th coordination sphere}$$

$$r - \text{ interatomic distance}$$

$$f - \text{ backscattering amplitude}$$

$$\varphi - \text{ phase shift}$$

$$\sigma - \text{ Debye-Waller factors}$$

$$\lambda - \text{ photoelectron mean-free path}$$

Elem	Elements of the 3D structure from multiple scattering									
		Sample								
	Parameter									
		Nitpp	NiHL	NiOEP	Сотрр	CoHL	CoOEP	CuTPP	CuHL	CuOEP
	Ni-N	1.928	1.937	1.935	1.946	1.963	1.997	1.994	2.025	2.035
	N-Ca	1.364	1.378	1.400	1.387	1.396	1.379	1.396	1.481	1.400
	Ni-N-Ca	132.3	131.8	130.0	129.4	129.9	130.1	128.3	122.8	127.8
	Ni-Cm	3.311	3.342	3.316	3.25(?)	3.304	3.302	3.31	3.35	3.26
	Ni-Cp	4.906	4.927	-	4.909	4.947	-	4.96	4.97	-
	Ni-Cp-Cm	0.41	0.19	-	3.59	1.77	-	0.0	4.0	-
	N-Ni-N	179.9	179.9	180	179.9	180	180	180	180	180
	Ca-Cb	1.453	1.431	1.46	1.438	1.458	1.444	1.430	1.422	1.460
	N-Ca-Cb	113.5	114.75	114.1	114.8	113.2	116.0	113.3	108.8	113.4
	Eo	8347.9	8348.8	8349.2	7722.2	7724.2	7725.6	8994.9	8992.3	8998.0
	Ni-Cb	4.26	4.26	4.29	4.27	4.30	4.34	4.29	4.29	4.37
	Ni-Ca	3.02	3.03	3.03	3.02	3.05	3.07	3.06	3.08	3.10
	Ni-N-Ca-Cb Dihedral angle	180	180	180	179.6	178.0	180	180	180	180
	ISTR 2011 Moscow									

