

Moscow, July 05, 2011

ISTR-2011:

Re and Tc in cermet waste forms

S. Yudintsev, E. Konovalov*, B. Nikonov

(IGEM RAS, * FSUE «SRC RF – IPPE»)

Content

- Technetium in the Periodic Table
- Tc-99 in the Geosphere & biosphere
- Tc in the Nuclear Fuel Cycle
- Matrices for Tc immobilization
- Cermets produced by SHS method
- Alternate routes for Tc-alloy fabrication
- Conditions for Tc geological disposal
- Conclusions

Tc in the Geosphere & biosphere:

<u>Natural Tc</u> is found in U ores (Tc : U ~ 10^{-12}),

 ΣU deposits ~ 30.10¹² grams (= <u>tens g of ⁹⁹Tc</u>).

Nuclear industry: ~250 t of ⁹⁹Tc (~ 4 MCi).

~10⁵ Ci are discharged due to SNF reprocessing (~2500 Ci = 0.2 ton Tc / y – from a large plant).

 \sim 4000 Ci – from the all nuclear weapon tests.

~<u>10 tons of Tc-99</u> in the biosphere.

0.005 – **0.5 Bq** / **L** (up to 0.001 ppb) in the waters of North and **Irish Sea** near La Hague and Sellafield SFRPs.

0.004 – **0.78 Bq / g (1.6 ppb)** in soils and in sediments of **the Techa river**

 $1 \text{ Ci} = 74 \text{ g of } {}^{99}\text{Tc}, 1 \text{ Bq} = 2 \text{ x } 10^{-9} \text{ g}.$

Attention to Tc is explained by:

- Large half-life period of Tc-99
- High content in spent nuclear fuel
- Separation in PUREX / UREX, etc
- Stability of TcO₄⁻ in surface waters
- Good solubility of pertechnetates

Should be immobilized in stable forms

 \prod

Summary of data on the Tc host phases corrosion in water.				
Waste form (Tc, in wt.%)	Oxidation state of Tc	N _L Tc, g / m² ⋅ day		
Glasses (< 0.1)	$Tc^{7+} > Tc^{4+}$	>10-2		
Concretes (≤ 0.1)	Tc ⁴⁺ or Tc ⁷⁺	$10^{-3} (\mathrm{Tc}^{4+}) - 1$		
$Mg_{2}TiO_{4}(10-40)$	Tc ⁴⁺	$10^{-1} - 10^{-3}$		
Spent NF (~0.1)	$Tc^{o} > Tc^{4+}$	10-3		
Synroc-C (~0.5)	Tco	10-3-10-5		
Alloys (2 – 80)	Tco	10-4		

Host phases for Tc^{4+} and Tc^{0} : [6]Ti⁴⁺ (0.61) < [6]Tc⁴⁺ (0.65Å) < [6]Zr⁴⁺ (0.72) \downarrow Tc⁴⁺: Spinel – MgTiO₄, Rutile – TiO₂ Perovskite – CaTiO₃, Pyrochlore – $Ln_2(Ti,Zr)_2O_7$ Tc⁰: Zr-, Fe-Zr-, SS-based alloy

Routes for Tc-99 forms fabrication					
Route	Т, °С	Media	Matrix	Remarks	
Low-T	25 –	Air	Concrete,	$Tc^{4+/7+} < 0.1\%$	
	100		CBPCs	(P = 1 atm.)	
Interme-	200 -	Air	Silica gel	$Tc^{4+} = 10 \text{ wt.}\%$	
diate-T	400			(P = 1 atm.)	
	800 -		Glasses,	$Tc^{4+/7+} =$	
High–T	1300	Vacuum	Ceramics,	0.1 - 40 wt.%	
			Synroc	(P = 1 - 300 atm.)	
Super-HT	> 1600	Air, Ar,	Alloys,	$Tc^{0} = 2 - 80\%$	
(SHS)		Vacuum	Cermets	(P = 1 atm.)	
Volatility of Tc ⁷⁺ (>100°), Tc ⁴⁺ (>900°)!					

Self-sustaining high-temperature synthesis (SHS) of Re (Tc) matrices

$$Al + 0.18 \cdot [Fe_2Cr_{0.6}Ni_{0.29}O_{4.34}] + 0.22 \cdot KReO_4 + x \cdot Al_2O_3$$
$$+ 0.44 \cdot SiO_2 = 0.11 \cdot (K_2O \cdot Al_2O_3 \cdot 4SiO_2) + (0.39 + x) \cdot Al_2O_3 + 0.18 \cdot [Fe_2Re_{1.22}Cr_{0.6}Ni_{0.29}] + Q$$

30 wt.% $KReO_4$ in batch (19 % Re in matrix)

Product: cermet = ceramic + alloy

Systen Alloy c	n: S omp	teel ositio	-Re on, a	(Tc t.%	
Element	1	2	3	4	2
Re	47	15	67	31	30 Mm
Fe	35	55	17	48	
Ni	6	17	16	17	3
Cr	12	7	-	4	
Si	-	6	-	-	
Phase	σ	γFe	3	σ	4

System Mo - Re: glass+alloy+garnet.							
Alloys	Alloys composition, at.%						
Element	1	2	3 (minor)				
Re	48	20	13	· · · · · · ·			
Мо	43	73	51	25к0			
Si	7	4	34				
Y	2	3	2				
Phase	MoRe	Mo _{ss}	Mo ₄ ReSi ₃	25k0			

Inductive melting in "cold" crucible – promizing route for Tc-alloy fabrication.

IMCC, SIA "Radon": glasses, glass-ceramics, & ceramic waste forms (Stefanovsky et al.).

VNIIKhT. H = 3.5 m, d = 650 mm, up to 2500°C (Ar, air, vacuum). **50 kg / h of Fe-, Zr-, Nb-, U-alloy** (Gotovchikov et al.).

VNIINM. Ar: Steel, Zr-alloy, up to 50 kg / h (Pastushkov et al.).

Tc – as metal and melting in inert gas

Crystalline rocks structure

Crystalline masifs of basic (basalt, gabbro) or intermediate (diorite, granodiorite, gneiss) rocks at depth of 300-500 m.

Rock – water interaction provides reducing (Eh < 0) and weakly alkaline (pH = 8–9) hydrogeochemical conditions.

Conclusions on management with ⁹⁹Tc-containing wastes:

1. Incorporation of ⁹⁹Tc in alloy and its disposal in weakly alkaline and reducing media (pH=7.5 – 9, Eh \leq 0), typical for waters at depths \leq 500 m.

2. Industrial methods for synthesis of the ⁹⁹Tc forms can be developed: sintering, arc-melting, SHS, <u>IMCC ?</u>

Results are published in papers:

- Geology of Ore Deposits. 2009 (51) 259–274.
- Geochemistry International. 2010 (1) 1–14.
- Doklady Chemistry. 2010 (431) 71–75.
- Doklady Chemistry. 2010 (431) 102–108.
- Doklady Chemistry. 2010 (434) 214–218.
- Russian Chemical Journal. 2010 (LIV) 69-80.
- Geoecology. 2010 (3) 232–242.
- Geochemistry International. 2011 (10) 1–14.

This study was supported by the RFBR.