

STRUCTURAL CHEMISTRY OF TECHNETIUM CARBONYL COMPOUNDS

G.V. Sidorenko¹, A.E. Miroslavov¹, D.N. Suglobov¹, M.S. Grigor'ev², and V.V. Gurzhii³

¹ Khlopin Radium Institute, Research and Production Association, Federal State Unitary Enterprise, 2-i Murinskii pr. 28, St. Petersburg, 194021 Russia

² Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia

³ St. Petersburg State University, St. Petersburg, Russia

Chemical forms of mononuclear Tc(I) carbonyls $Tc(CO)_nL_m$

- n = 6: Tc(CO)₆⁺
 n = 5: Tc(CO)₅M
 n = 4: Tc(CO)₄B [no data for Tc(CO)₄M₂]
- *n* = 3: Tc(CO)₃M₃, Tc(CO)₃BM, Tc(CO)₃T (the most numerous group)
- *n* = 2: Tc(CO)₂M₄, Tc(CO)₂BM₂, Tc(CO)₂TM
 n = 1: Tc(CO)TM₂

Ligands: M, monodentate; B, bidentate; T, tridentate; charge omitted. n = 1 and 2: only with π -acceptor ligands like phosphines

Tc–CO bond lengths in higher carbonyls, Å (Tc–CO: trans to other ligand; Tc–CO*: trans to CO)			
Complex	Tc–CO	Tc–CO*	Difference
[Tc(CO) ₆] ⁺	_	2.024–2.032	_
TcCl(CO) ₅	1.915	av. 2.016	0.099
TcBr(CO) ₅	1.937	av. 2.021	0.084
Tcl(CO) ₅	1.938	2.015	0.077
[Tc(CO) ₅] ₂	1.946	av. 1.998	0.052
[Tc(CO) ₅ (PPh ₃)] ⁺	2.005	av. 2.000	0.005
[Tc(CO) ₅ (Bu ^t NC)] ⁺	1.999	av. 2.014	-0.014
[Tcl(CO) ₄] ₂	av. 1.91	av. 2.00	0.09
Tc(MeOCS ₂)(CO) ₄	av. 1.940	av. 2.008	0.068
[TcH(CO) ₄] ₃	av. 1.943	av. 2.002	0.059
Reactivity of TcX(CO) ₅ in dissociative decarbonylation, series of X: CI > Br > I >> Tc(CO) ₅ , PPh ₃ , RNC, CO			

Comparison of compounds TcX(CO)₅ and TcX(CO)₃(σ-donor)₂ (geometries and physicochemical properties) TcBr(CO)₅: d(Tc-Br) 2.6123(9) Å (XRD), 2.616 Å (QCC)

[TcBr(CO)₃(en)]: *d*(Tc–Br) 2.640(1) Å (XRD)

TcCl(CO)₅: *d*(Tc–Cl) 2.4815(19) Å (XRD), 2.478 Å (QCC), *W*(Tc–Cl) 0.38 [TcCl₃(CO)₃][–]: *d*(Tc–Cl) 2.563 Å (QCC), *W*(Tc–Cl) 0.32

 $TcX(CO)_5$ (X =CI, Br): covalent molecules, noticeably volatile at room temperature, no pronounced tendency to electrolytic dissociation

[TcBr(CO)₃(en)]: sublimes only at $T \approx 200^{\circ}$ C/vacuum

 $[TcCl(CO)_3(H_2O)_2]$: pronounced electrolytic dissociation in aqueous solution, low complexation constants in the system $[Tc(CO)_3(H_2O)_3]^+$ –Cl⁻

