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Synthetic nanodiamonds: Production methods and
properties |

Detonation of O-poor explosives (TNT/hexogen...)
in a closed volume

Discovered at least three times (1963-1988) in the
USSR.

Narrow size distribution 4-5 nm (XRD/TEM) :
Strong tendency of aggregation of primary nanodiamond |
particles into larger very stable clusters (100-200 nm)
Very fast process (microseconds) at high PT-conditions.
The charge must be cooled at extremely high rates to
reduce graphitisation.

Main chemical impurities: N, O, H i
Mass production — 100’s kg/year for various industrial lakoubovskii et al.,
and biomedical applications 2008
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Shock wave processing of C-containing materials

 First realised in 1959 by DeCarli in USA: shock compression of
graphite.

 Grains up to several microns in size could be obtained. Very
different P-T-t paths in comparison with the detonation
synthesis.

» Graphite to diamond transition may be martensitic (diffusion-
less) or displacive depending on orientation of the shock wave
and graphite planes.

» One may live without graphite precursor (e.g. shock
transformation of soot, hexane etc), but the efficiency of the
diamond formation is lower.
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Grinding of macroscopic diamonds

It is possible to mechanically grind mAcroscopic diamond
crystals to nano sizes.

» Usually the crystals are irradiated/annealed prior to grinding.
The main idea is to create luminescing ND’s.

» The process is very labour- and time-consuming and (at present)
very expensive.
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Chemical Vapour Deposition (CVD)

In mid 90-ies it was found (Gruen et al., 1994) that use
of some types of microwave reactors permits to obtain
thin (few microns) diamond films with nanosized
grains: UNCD or Ultra NanoCrystalline Diamond. The
growth units are, possibly, C, molecules.

Growth is very slow.
Grain boundaries are graphitic.

Huge influence of gas composition on grain
morphology: possibility to make diamond nanowires!

Vlasov et al.,
2007




Detonation nanodiamonds

Advantages:
Small (4-5 nm) and uniform size;
Mass production and relatively low price;
Very bright and efficient (high quantum yield) luminescence;

Some defects (e.g., the Nitrogen-Vacancy (NV) complex) are
paramagnetic => applications for (nano)magnetometry;

Biological compartibility (virtually nontoxic);

Surface radicals could be controlled relatively easily (surface
functionalisation).

Problems:

Very strong aggregation of nanograins: difficult (but possible!)
to separate individual particles;

Very problematic control of luminescing properties (difficult to
make abundant NV defects);

Difficult to achieve single-photon emission.

Structure of dispersed nanodiamonds

After synthesis and purification The most probable structure of
detonation nanodiamonds form grains of detonation
aggregates of diamond grains, bounded nanodiamonds (Aleksenskii et al., SSP,
by (semi)amorphous carbon. 1999; Palozs et al., DRM, 2006).
Separation of individual diamond grains
is notoriously difficult. Dyarticto
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Structure of dispersed nanodiamonds
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Applications of Detonation Nanodiamonds & Onion-like Carbons

+_Structural polymer nanocomposites - Paints. coatings //d/

- UV protection, EMI shielding
- Wear resistant paints
- Transparent armor % ? -Improved thermal properties
- Improved adhesion
« ND-CNT functional coatings

» Photonic structures

» Motor oil additives
+ Solid lubricants

|| Ni with nanodiamond




Some applications of Detonation
Nanodiamonds

« Luminescing nanoparticles for biomedicine
« Sorbent of radionuclides

Nanowerk.com Ohulchanskyy et al., 2010

Structure




Nanodiamond produced by a shock wave
conversion of graphite

* Presence of graphite (1)
« Presence of lonsdaleite (hexagonal diamond) o
* N<0.5 wt% (from CHN analysis)
* Particle size from Dynamic Light
Scattering: 25nm
«Crystal size from XRD:
8 nm (111 reflection, Diamond),
2.4 nm (002 reflection, Lonsdaleite)
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* N <0.5 wt% (from CHN analysis)
* Graphite is not abundant

* Crystal size from XRD: 14.8 nm (<111>), 9.6 nm (<110>)
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Detonation Nanodiamond

Courtesy of B.Palosz, IHPP
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* N ~2.4 wt% (CHN analysis) — from TNT\RDX (21 at% of N in 50\50)
* N <1 wt% (CHN analysis) — from TNT\HNS (hexanitrostilbene) (15 at% of N)
» Graphite is not abundant

« Crystal size from XRD: 4 nm il .D~6nm
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Near-Edge X-ray Absorption Fine Structure
(NEXAFS) spectroscopy

Absorption spectrum at carbon
K-edge is typical for diamond
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The field of view is 37 microns.




Lattice defects

Raman & PL Spectra of Nanodiamonds
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Nitrogen-Vacancy Centers in Detonation ND
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Intense and stable emission from the NV
centers in large DND crystallites (>=20-30 nm)

I. Vlasov et al., Small, 2010

Near-Edge X-ray Absorption Fine Structure
(NEXAFS) spectroscopy of N in nanodiamond

Nitrogen K-edge

N spectra are similar for dispersed
(detonation and meteoritic)
nanodiamonds and for UNCD
(Shiryaev et al., 2011; Zapol et al., 2003).

Absorption, arb.units
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N is clearly NOT in substitutional — Ninh-Dia

.. . ——N cluster in c-Dia
position (modeling by feff8.2)! —N.inc-Dia
_geICeCr-aE: Il\el!lv in c-Dia

Most likely N is present in extended
defects such as twin boundaries
(Vlasov et al., Small, vol. 6, 2010).

Absorption, arb.units

Spectroscopic manifestations of N in

ND must differ from macrocrystals!! e




Nitrogen state in Detonation Nanodiamond:
“small™ particles

Elimination of contribution

of N from surface groups:
N-R
Sp2C OR

—( J)—

Annealing™ oxidation
in vacuum  of sp2 C

S. Turner, et al. Adv. Funct. Mater. 2009, 19, 2116-2124
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Other luminescing defects in
nanodiamonds

In our recent study of
nanodiamonds from meteorites
(Shiryaev et al., 2011) we have shown
that nanodiamond particles 1-2 nm
in size may contain a bright
luminescing center: the silicon-
vacancy (Si-V).

The PL line is very narrow for
nanoparticles.

New promising applications!

Surface of dispersed nanodiamonds
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Surface of nanodiamonds

1-phonon region: 2-phonon region:
defects lattice
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IR spectra of sintered nanodiamonds
(Shiryaev et al., JPCM, 2006)

Nanodiamonds as sorbents of radionuclides

Some examples:

Sorption of Cs (Chukhaeva and
Cheburina, 2000): up to 0.5 mmol/g

Sorption of Technetium (see poster
6P.3 by Obruchnikova et al. today).
Partition coefficients are
comparable to the best anionites
Sorption of Uranium.
Degree of U extraction from

solution exceeds 90% in broad pH
range.

CTeneHb u3BneveHms

mKd [pH3.6.t=1h}
= Kd {pH 3.6, t = 1 week]

3885883888
2l

pH
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Nanodiamonds as efficient sorbents of
radionuclides

Main advantages:

» High temperature stability (400 °C is feasible)

* High chemical and radiation stability

* High density

* Negligible swelling

* Itis possible to adjust surface chemistry to increase
sorption of target elements

+ Labeling with radionuclides

» Efficient desorption is possible => repeated use of the
sorbent

Conclusions

* Our study shows that it is possible to control nitrogen content
of detonation nanodiamonds by proper choice of explosives

» We have observed the NV and Si-V defects in small and large
nanodiamond particles

 Nitrogen in nanodiamonds is largely confined to extended
defects such as grain boundaries

* Nanodiamonds are efficient sorbents of radionuclides

Future works:
 Further tuning of luminescing properties of nanodiamond
* In-depth studies of functionalisation of nanodiamond surfaces
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