

Technetium Binary Halides: from Molecular to Extended Structures

<u>F. Poineau¹</u>, B. L. Scott², P. F. Weck¹, E. V. Johnstone¹, P. M. Forster¹, K. R. Czerwinski¹, A. P. Sattelberger^{1, 3}

1. Department of Chemistry, University of Nevada Las Vegas, Las Vegas, USA

2. Materials Physics and Applications Division, LANL, Los Alamos, USA

3. Energy Engineering and Systems Analysis Directorate, ANL, Argonne, USA

Fundamental Tc chemistry Study of Tc complexes with quadruple metal-metal bond and their transformation to binary halides Background I. Studies of the precursors: the quadruply bonded Tc dimers A - (n-Bu₄N)₂Tc₂Br₈ B - C₂(O₂CCH₃)₄X₂(X = Cl, Br) C - Tc₂(O₂CCH₃)₂Cl₄ I. Synthesis and characterization of Tc binary halides A - Technetium trichloride B - Technetium trichloride C - Binary halides as precursors of low-valent complexes

GOAL

Explore the coordination and synthetic chemistry of Tc binary halides and quadruple metal-metal bonded dimers:

- Structure and bonding of $Tc_2Br_8^{2-}$ and $Tc_2(O_2CCH_3)_4X_2$ (X = Cl, Br)
- Synthesis of binary halide from reaction Tc₂(O₂CCH₃)₄Cl₂ and HXg (X=Cl, Br)
- Study of structure of Tc binary halides and comparison with Re, Mo, Ru
- Binary halides as precursor for synthesis of new complexes

Sir	ngle-crystal XRD		
Reaction KTcO ₄	in HOAc/ HCl at 22	0 °C under	H ₂
(see: W. Ke	erlin, talk 1.12 Tu	esday 14.	25)
4	Compounds	Тс-Тс	Tc-X
	(n-Bu ₄ N) ₂ Tc ₂ Cl ₈	2.147(1)	2.34(2)
	(n-Bu ₄ N) ₂ Tc ₂ Br ₈	2.162(1)	2.4973(9)
	Tc ₂ (O ₂ CCH ₃) ₄ Cl ₂	2.18(2)	2.43(2)
	Tc ₂ (O ₂ CCH ₃) ₄ Br ₂	2.19(2)	2.63(2)
Elongation of ~ 0.03 Å of → Tc-Tc separation dep	Tc-Tc from (n-Bu₄N) pends of the position) ₂ Tc ₂ X ₈ to T of the X ter	c ₂ (O ₂ CCH ₃) ₄ X ₂ minal ligand.
 Axial ligand: d_{z2} orbital is s Strong axial ligand (σ Tc-C elongation of Tc-Tc 	shared between σ Tc· Cl) → weakening of	-Tc and σ T the σ Tc-Tc	c-Cl bond and

Crystal grown	Single-crysta	I XRD ler vacuum at 1	150°C	
	Tc Cl O C C	-acetate and 4 = 2.150 Å: qua ctural to Re ₂ (ral parameter	π_{n} colored equatorial Cl idruple bond $O_{2}CCH_{3})_{2}Cl_{4}$ s similar to Tc ₂ Cl	82-
Compounds	Tc-Tc (Å)	Tc-X (Å)	<tc-tc-x (°)<="" th=""><th></th></tc-tc-x>	
Tc ₂ (O ₂ CCH ₃) ₂ C	Cl ₄ 2.150(1)	2.312	103.0(8)	
(Bu ₄ N) ₂ Tc ₂ Cl	8 2.147(4)	2.320(4)	103.8(4)	
Decrease of Tc-Te • Confirm influen	c from Tc ₂ (O ₂ CCI ice of axial Cl lig	H ₃) ₄ Cl ₂ to Tc ₂ (and on Tc-Tc	O ₂ CCH ₃) ₂ Cl ₄ separation	

· Influence of X (Cl, Br) nature and position on Tc-Tc separation

• Axial X ligand in $Tc_2(O_2CCH_3)_2Cl_4 \rightarrow$ larger Tc-Tc separation

 \cdot Br induces more steric congestion in $Tc_2X_8{}^2$ than Cl ligand \rightarrow Tc-Tc elongation

\rightarrow Reaction between Tc₂(O₂CCH₃)₄Cl₂ and HX(g) (X=Cl, Br)

- \cdot One novel quadruple Tc-Tc bonded dimer: $Tc_2(O_2CCH_3)_2Cl_4$
- · Two new binary halides: TcCl₃ and TcBr₃
- · For X = Cl, mechanism similar to Re, $Tc_2(O_2CCH_3)_2Cl_4$ intermediate
- \cdot For X = Br, Tc₃Br₉ or/andTc₂(O₂CCH₃)₂Br₄ unstable and decompose

