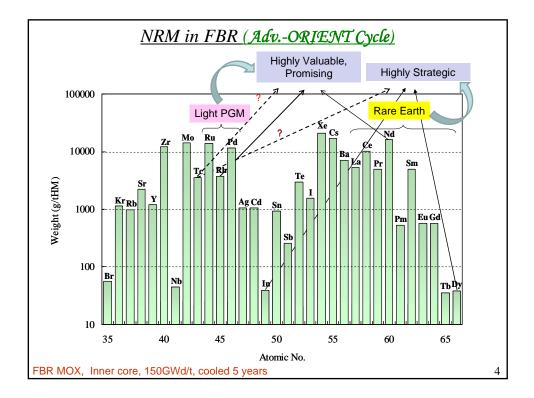
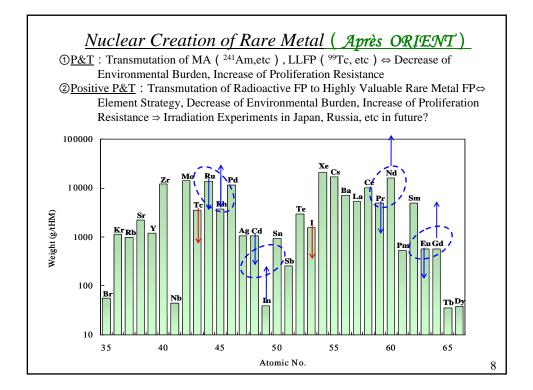
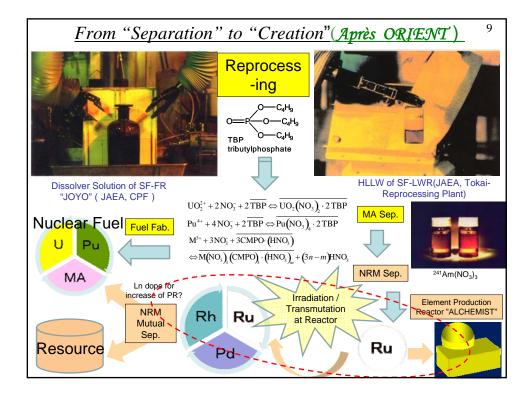
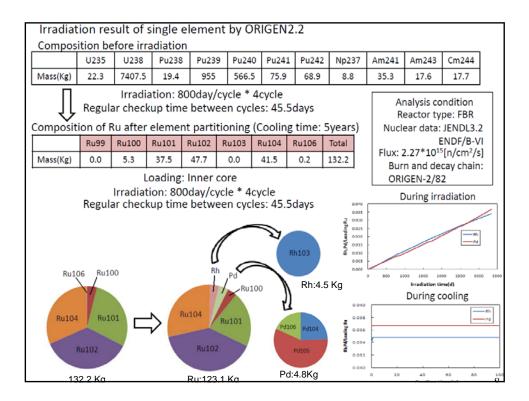
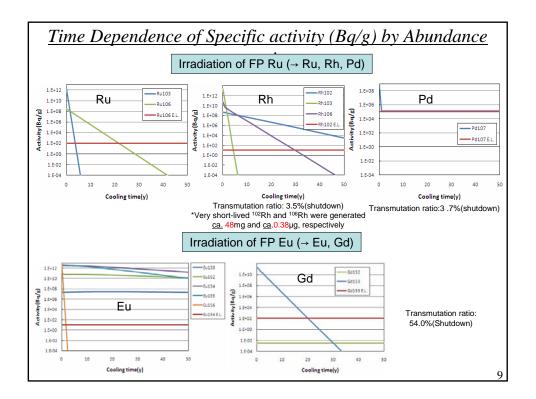

Te 7^d International Symposium

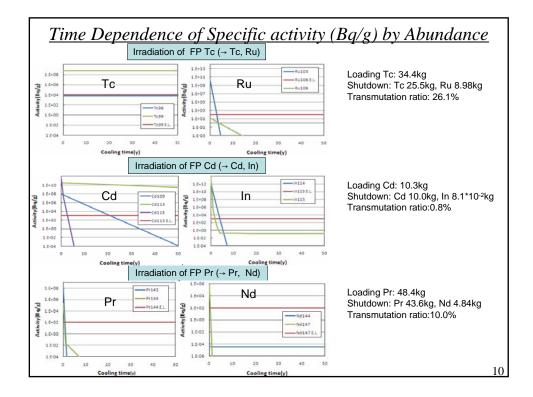


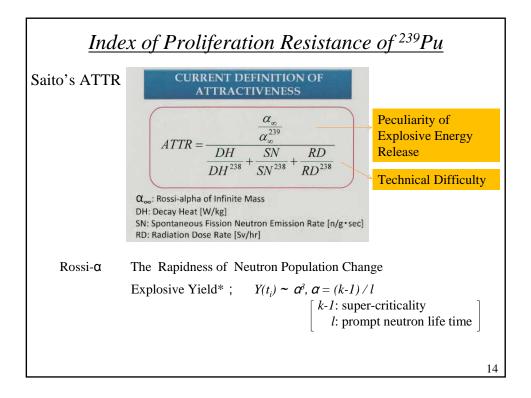

How to Manage Technetium (Nuclear Rare Metal) and Actinides, Toward Future Reprocessing System Providing Non-Proliferation From Adv.-ORJENT Cycle to Après ORJENT

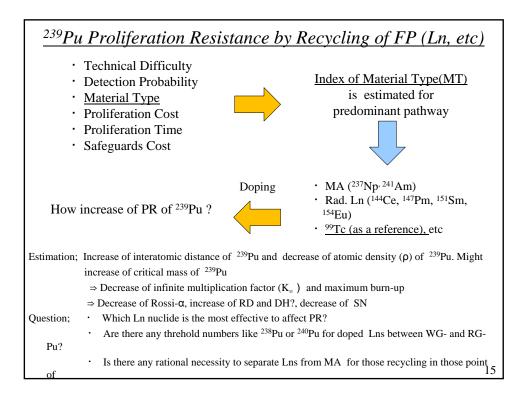

> M.Ozawa, T.Suzuki, S.Koyama, Y.Fujii and M.Saito Tokyo Institute of Technology JAPAN

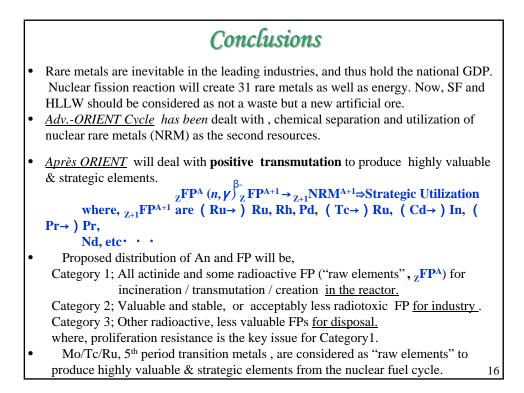




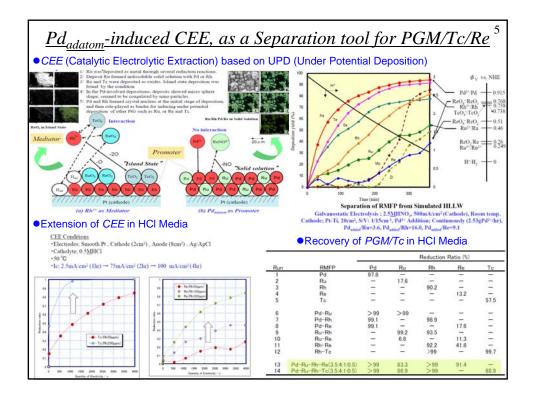


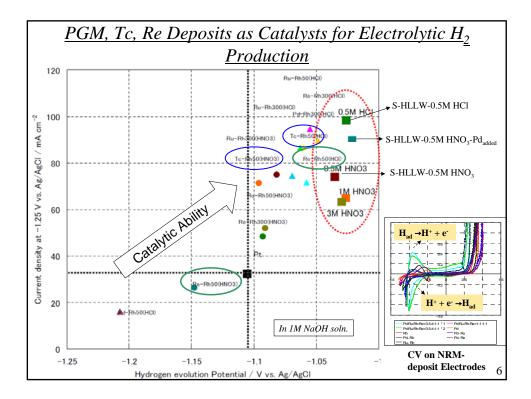



				<u>for</u>	Cal	cula	<u>tion</u>					
Economy tipe of	core (B.R. =	1.03)										
O/M ratio = 1.0)5											
Loaded fuel (kg	g/batch)											
	Pu content	U235	U238	Pu238	Pu239	Pu240	Pu241	Pu242	Np237	Am241	Am243	Cm244
Region	(%)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)
Inner core	18.3	22.3	7407.5	19.4	955	566.5	75.9	68.9	8.8	35.3	17.6	17.7
Outer core	21.1	20.5	6802.5	21.3	1048	621.8	83.3	75.6	9.7	38.8	19.4	19.4
Axial Blanket	0	20.7	6885	0	0	0	0	0	0	0	0	0
Table		reactor	n of Jap	C	ommercial	 1E-1	F				1	
Thermal output	JOYO MK-II co	reactor	MONJU	C	ommercial Reactor	- 1E-2						
Chermal output (MWt)	JOYO MK-II co 100	reactor	MONJU 714	C	ommercial Reactor 3570	- 1E-2						
Thermal output (MWt) Power fraction	JOYO MK-II co 100 0.95	reactor	MONJU 714 0.53	C	mmercial Reactor 3570 0.50	- 1E-2						
Thermal output (MWt) Power fraction Number of ubassembly	JOYO MK-II cc 100 0.95 67	reactor	MONJU 714 0.53 108	C	ommercial Reactor 3570 0.50 288	- 1E-2				-		
Thermal output (MWt) Power fraction Number of ubassembly .attice pitch (mm)	JOYO MK-II cc 100 0.95 67 81.5	reactor	MONJU 714 0.53 108 115.6	C	206.0	- 1E-2						
Thermal output (MWt) Power fraction Number of ubassembly .attice pitch (mm) Stack length (mm)	JOYO MK-II cc 100 0.95 67	reactor	MONJU 714 0.53 108	C	ommercial Reactor 3570 0.50 288	- 1E-2						
Thermal output (MWt) Power fraction Number of ubassembly .attice pitch (mm)	JOYO MK-II cc 100 0.95 67 81.5	reactor	MONJU 714 0.53 108 115.6	Ca	206.0	Neutron flux [N cm2s/Lethargy] National lux [N cm2s/Lethargy] 8 31 31 31 32 11 31 11 31 11 31 11 31						
Thermal output (MWt) 'ower fraction Number of ubassembly _attice pitch (mm) tack length (mm) Active core volume	JOYO MK-II et 100 0.95 67 81.5 550	reactor	MONJU 714 0.53 108 115.6 930	Ca	2000 000000000000000000000000000000000	16.2 (45)uentians/retinans/retinans/ Nentronnflux (N/ cm2s/ retinans/ 16.6 16.7 16.8 16.9 16.1 16.1 16.12		0 1E+1	1E+2		E+4 1E+4	JOYO MK









<u>Lessons learned in the Past Research (Adv.-ORIENT Cycle)</u> on Utilization of NRM-deposit Electrodes

- Highest catalytic reactivity has been assigned to the quaternary deposit (Pd-Ru-Rh-<u>Re</u> (3.5:4:1:1)) electrode, in electrolysis either in NaOH or artificial sea water (Global2007).
- Noblest φH_{init.} (>-1.05V) was observed on NRM deposit electrodes from S-HLLW (HCl, HNO₃)
- 3) Energy consumption of such electrodes on H₂ production was about half of smooth Pt electrode, specifically in artificial sea water (*ibid*.).
- 4) Those (including the deposit from S-HLLW) reactivity surpassed that of Pt-black electrode as well as smooth Pt (*ibid*.).
- A high reactivity would attribute to higher numbers of Ru and Rh atoms at the surface (Global2007, 2009). Higher adsorption sites for H⁺ by them was responsible.
- 6) Pd was independent of such a reactivity, but caused UPD by Pd_{adatom}.
- 7) <u>Tc</u> showed the same or higher reactivity than that of <u>Re</u>, in/off the combination with Rh (*ibid*.).

7