

Rard J.A. and the delegates IST2005

- At IST1993 a draft project on Tc Thermodynamics project was first presented.
- 12 years ago an excellent review of NEA-TDB summed up the chemical thermodynamics of Tc : Rard J.A., Rand M.H., Anderegg G., Wanner H., Chemical thermodynamic of technetium. Eds. Sandino Amalia M., Osthols E. NEA (1999) Elsiever Publ. Amsterdam. Axes for studies
 - Time passed being characterized with the controversy of nuclear industry present and future status, drastic for Tc-99 originating mostly as the uranium fission product.
 - The definite stop in nuclear development would fix Tc further accumulation but now is clearly not the case and we appreciate the authors who were continuing efforts in Tc focused sciences.

Recent steps

- In Port Elizabeth at the ISTR-2008 we reexamined the gaps in Tc thermodynamics data, having seen that most of the problems lightened by Joe Rard remained .
- All the gaps should be closed we know so indeed one may see : among the gaps named 3 years ago some are thoroughly studied and important answers were obtained: Tc(VII) in strong acids closed thanks to our collaboration with F. Poineau and his colleagues from UNLV
- Chemical medium for stabilisation and Instrumental and methodology breakthroughs

		Parameters for inner electrons (Tc3d _{3/2.52})		
	Te Oxide	E(Tc)	Half-width	
1	Te ₂ O ₅	256,6	1,8	
2	Tc ₂ O ₅ *nH ₂ O	256,0	1,7	
3	TcO ₂	255,2	1,8	
4	TcO2*1.6H2O	255,4	2	
5	Tc ₂ O ₃	-	-	
6	Tc ₄ O ₅ *14H ₂ O	255,9	1,8	
7	Tc ₄ O ₅	255,0 (0,4) 253,6 (0,4) (11:12=1:1.3)	3.5	

of Technetium Possessing a Metal-Metal Bond Order of 3 F. A. Cotton, S.C. Haefner and A. P. Sattelberger *Inorg.* Chem. 1996, 35, 1831.

decomposition of nH₂O at 100°C nH₂O – gamma NaOH + i-BuOH ^(14H₂O hydrolisis) K₃Tc₂Cl₈ thermolisis of 4O₅*14H₂O azzi, 1974 - Tc₂O₃ anica Chimica Acta, Volume 9, Pages 263-28 G. A. zocchin, F. Magno, U. Mazzi, R. inova

e fractional

ion of polymers er - Sattelberger [M0₃O₄(DMF)₉]⁴⁺

Study of Tc(IV) uptake with FeOOH under reducing conditions

Reducing agent: 0.02M FeSO4, T = 60°C, time = 3 h

Precipitate : FeOOH/Fe₂O₃/Tc_{reduced}

Precipitation test:		Leaching test (t= 18° C, d = days):					
NaOH	Tc in solid	Leaching	Leaching yield ,Tc, %				
Μ	phase, %	agent:	1 d	10 d	29 d	105d	
0.6	97	0.1M NaOH	1.0	9.8	14.9	24	
2.0	88.0	1M NaOH	2.9	16.5	40.2	58	
4.0	90	2M NaOH	0.8	2	3	8.2	

Though Tc adsorbed better on iron hydroxide from 0.5–2.0 M NaOH relative to 3.0-4.0 M NaOH, the precipitates formed at lower NaOH concentration were more easily leached by the NaOH leachant, The precipitate should be examined by XAFS Tc leaching with H_2O_2 was 20 % and with $Na_2S_2O_8$ was 70-100% in 100 days

