

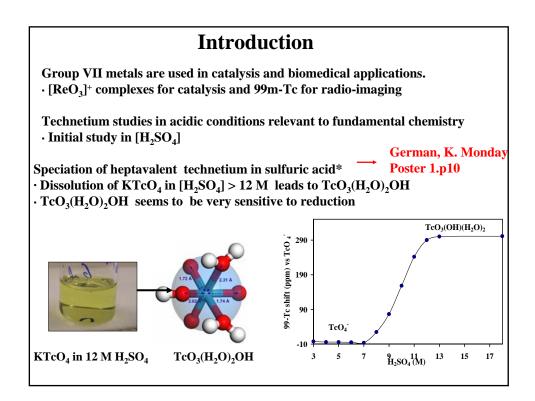
Speciation of Technetium in Sulfuric Media. Effect of α - Radiations from the Arronax Cyclotron.

<u>F. Poineau¹</u>, I. Denden², R. Essehli², K. German³, K. Czerwinski¹, and M. Fattahi².

- 1. Department of Chemistry, University of Nevada Las Vegas, Las Vegas, USA
- 2. Laboratory Subatech, School of Mines of Nantes, Nantes, France
- 3. IPCE, Russian Academy of Science, Moscow, Russia

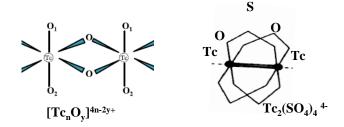
Chemistry of Technetium at Subatech, Nantes, France.

- Chemistry of Tc in the context of radioactive waste disposal
- Tc speciation in aqueous media (Cl., TFMS, SO₄², CO₃²...)
- · Effect of alpha, protons and gamma radiations on Tc chemistry


7 Thesis on Technetium chemistry since 1996:

K. Bensaid, L. Vichot, F. Poineau, X. Liu, I. Ilorens, N. Vongsouthi, I. Denden (2010)

Introduction


- I. Experimental methods
- II. Speciation of reduced Tc species in sulfuric acid
- 1- UV-visible spectroscopy
- 2- XAFS spectroscopy
- III. Effect of alpha-radiations on Tc speciation in sulfuric acid
- 1- UV-visible spectroscopy

Conclusions and future works

Speciation of reduced Tc species in sulfate not well studied

- \cdot Polymeric Tc(IV) in 0.01 M H_2SO_4 : $[Tc_nO_v]^{4n\cdot 2y+}$
- · Quadruple bonded Tc(III) dimer in concentrated [H₂SO₄]: Tc₂(SO₄)₄ ⁴·
- $\boldsymbol{\cdot}$ No monomeric Tc complexes coordinated to sulfates characterized

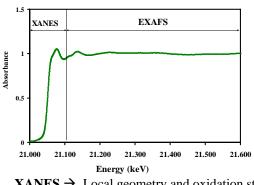
Goal:

 \cdot Investigate the formation of reduced Tc-sulfate complexes from the chemical and radiochemical reduction of $TcO_3(H_2O)_2OH$

I. Experimental methods

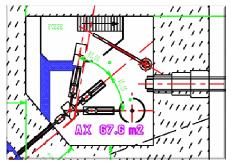
Preparation of solution

Dissolution of $KTcO_4$ in 12-18 M H_2SO_4

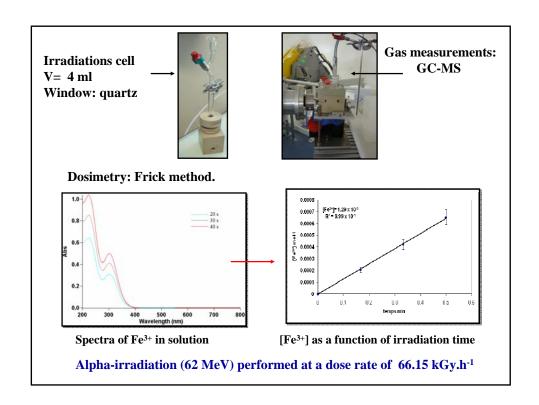

MeOH

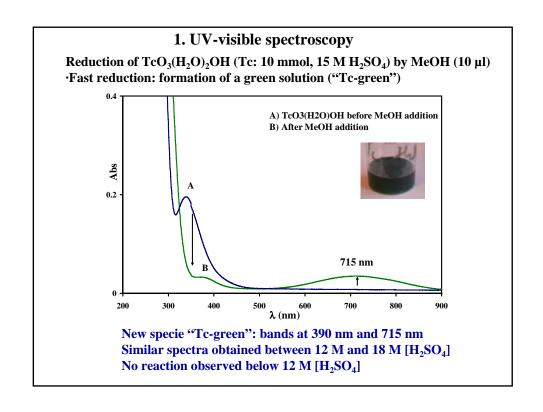
Formation of Tc reduced species • Reduction with methanol

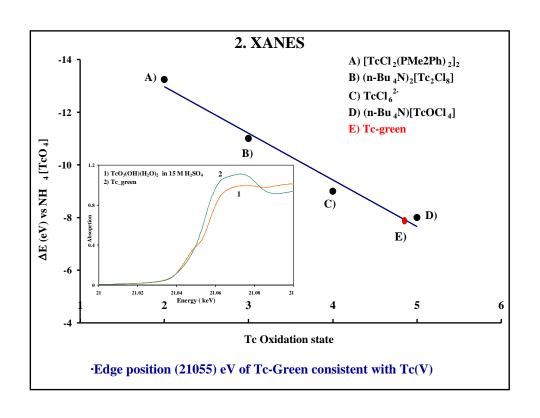
Spectroscopic methods


Characterization of Tc reduced species by UV-visible and XAFS spectroscopy

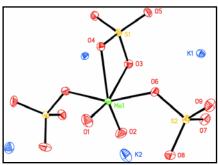
XANES → Local geometry and oxidation state **EXAFS** → chemical and structural parameter

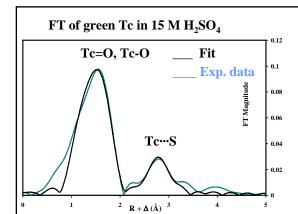

Experiments under alpha-radiations




ARRONAX cyclotron, Nantes, France:

- High energy (70 MeV for alpha)
- High intensity (750 µA for accelerated protons)


II. Speciation of reduced Tc species in sulfuric acid

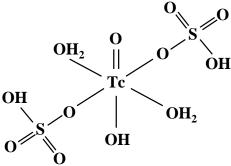

3. EXAFS

Adjustment of the k^3 -EXAFS spectra of Tc-green using the scattering calculated in $K_4MoO_2(SO_4)_3$

Mo=O1,2: 1.688 Å Mo-O6: 2.036 Å Mo-O3: 2.266 Å Mo-O3: 2.183 Å

Mo···S1: 2.954 Å (S bidendate) Mo···S2: 3.228 Å (S monodentate)

	Structural parameter		
	C.N	R (Å)	σ^2
Tc=O	0.9	1.60	0.0002
Тс-О	4.8	2.04	0.003
Tc-S	1.9	3.23	0.002


Results of EXAFS adjustment

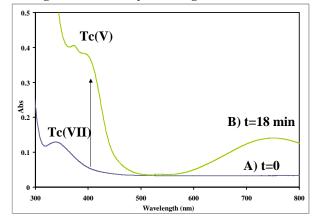
- → Monomeric octahedral complex
- → One oxygen atom at 1.60(2) Å: Tc=O; characteristic of Tc(V)
- ⇒ Five oxygen atoms at 2.04(2) Å : Tc-O; Tc-OH, Tc-H₂O, Tc-O(S)
- →Two sulfur atoms at 3.23(3) Å : Tc...S; two monodentate sulfate

In 15 M $[H_2SO_4]$: bisufate anion (HSO_4^-) is predominant specie (~ 12 M)

- \cdot Bisulfate anion in monodentate mode
- •The formula $TcO(HSO_4)_2(H_2O)_2(OH)$ is proposed

Structure proposed for Tc-Green

Formation mechanism proposed:

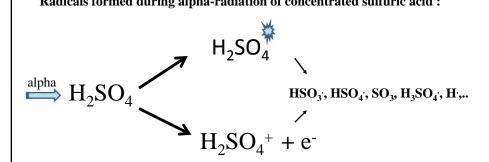

 $TcO_{3}(H_{2}O)_{2}OH + CH_{3}OH + 2HSO_{4}^{-} + 2H^{+} \Rightarrow TcO(HSO_{4})_{2}(H_{2}O)_{2}(OH) + CH_{2}O$

III. Effect of alpha-radiations on Tc speciation in sulfuric acid

UV-visible spectroscopy

Irradiation (18 minutes) of a 4 mmol TcO₃(OH)(H₂O)₂ in 18 M [H₂SO₄]

→ Change of color from yellow to green


after irradiation

UV-visible spectra of $TcO_3(OH)(H_2O)_2$ in 18 M $[H_2SO_4]$ before (A) and after 18 min of irradiation (B)

→Spectra similar to TcO(HSO₄)₂(H₂O)₂(OH)

Radiolytical reduction of Tc(VII) to Tc(V) by radicals

Radicals formed during alpha-radiation of concentrated sulfuric acid:

Very few study on alpha- radiolysis of concentrated $[H_2SO_4]$ Need further experiment to determine reduction mechanism \cdot Gas measurement ...

Conclusions and Future works

Heptavalent technetium very sensitive to reduction between 12 M to 18 M $[H_2SO_4]$ ·Reduced to Tc(V) by MeOH

EXAFS spectroscopy consistent with TcVO(HSO₄)₂(H₂O)₂(OH)

Heptavalent technetium is unstable under α -radiation in 18 M H_2SO_4 ·Reduced to $Tc^VO(HSO_4)_2(H_2O)_2(OH)$ by $[H_2SO_4]$ radiolysis products

- → Synthesis of a Tc^VO(HSO₄)₂(H₂O)₂(OH) crystal for XRD determination
- → Determination of Tc(VII) reduction mechanism under alpha-radiation Gas measurement during [H₂SO₄] irradiation
 - → Speciation of heptavalent and reduced technetium in triflic acid

Acknowledgments

- · We thank the director and the technical staff of Arronax cyclotron.
- \cdot Funding for this research was provided by a SISGR Grant from the U.S. Department of Energy under Contract No. 47824B.
- Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Questions