

D. Mendeleyev University of Chemical Technology of Russia



N.R. Antipkin, G.A. Biljalova, <u>M.A. Bogorodskaya</u>, A.O. Bogorodsky, A.B. Sazonov, A.S. Chagovets

#### Non-stoichiometric synthesis of rhenium heptasulfide hydrosol

7<sup>th</sup> International Symposium On Technetium and Rhenium Science and Utilization Moscow – 2011

9 Miusskaya square, Moscow 125047, Russia Tel (495) 4966217 fax (495) 9441987 mab800@mail.ru



| Re <sub>2</sub> S <sub>7</sub> application                                            |    |                   |
|---------------------------------------------------------------------------------------|----|-------------------|
| Catalysis :                                                                           |    |                   |
| 1)±H <sub>2</sub> – hydrogenation and dehydrogenation                                 |    |                   |
| 2)Organic synthesis of complex organic compounds, reduction                           |    |                   |
| 3)Rheniforming                                                                        | R, | S <sub>sp</sub> , |
|                                                                                       | nm | m²/g              |
| Po S                                                                                  | 20 | 0 <u>८</u><br>31  |
| $C_{17}H_{35}COOH + 3H_2S \xrightarrow{Re_2 \circ 7} C_{17}H_{35}CH_2SH + 2H_2O + 2S$ |    | 21                |
|                                                                                       | 40 | 15                |
| H-C-H $\sim$ Re <sub>2</sub> S <sub>7</sub> $\leftarrow$ + 4H                         | 50 | 12                |
|                                                                                       |    | 2                 |

# Re<sub>2</sub>S<sub>7</sub> application

 Nuclear medicine: nanoparticles labeled by radionuclides can be used in nuclear medicine for diagnostic and therapeutic purposes. Recently the nanocolloids of technecium – 99m have been widely adopted in the technique of intraoperational visualization.



radionuclide generator <sup>99</sup>Mo/<sup>99m</sup>Tc



### **Objective of the research:**

—to find optimal conditions for the  $Re_2S_7$  nanoparticles formation

-to determine kinetic parameters of the reaction



## Characteristics of disperse phase depend on

concentration of reagents
their ratio
order of mixing
synthesis time
temperature
method of stopping reaction





Re<sub>2</sub>S<sub>7</sub> synthesis

 $2NaReO_4 + 7Na_2S_2O_3 + 2HCI \rightarrow Re_2S_7 + 7 Na_2SO_4 + 2 NaCI + H_2O$ 

Possible elementary reaction

The formation of intermediate substances

 $NaReO_4 + Na_2S_2O_3 \rightarrow NaReO_3S + Na_2SO_4$ 

other water-soluble forms of Re are formed

5

Side reaction of hyposulfite decomposition

 $\mathrm{Na_2S_2O_3} + \mathrm{2HCI} \rightarrow \mathrm{2NaCI} + \mathrm{SO_2} + \mathrm{S_{coll}} + \mathrm{H_2O}$ 



































| Co<br>ob<br>me | mparisor<br>tained by<br>ethods      | n of hyd<br>differe         | lrosols,<br>nt               | Nº: 1 4 2 3  |                      |             |                             |
|----------------|--------------------------------------|-----------------------------|------------------------------|--------------|----------------------|-------------|-----------------------------|
| Nº             | Experiment                           | C <sub>o</sub> (Re),<br>g/l | $\frac{Na_2S_2O_3}{NaReO_4}$ | C(HCI),<br>M | C <sub>gel</sub> , % | Time<br>min | ø, nm                       |
| 1              | <b>«Coren»</b><br>radiopharmaceutica | 0,36                        | 6,0÷7,0                      | 0,07÷ 0,11   | 0,81                 | 3,5         | ≤1000                       |
| 2              | Zabel P.L.<br>2004                   | 0,59                        | 7,1<br>3,0                   | 0,125        | 0,17                 | 6÷10        | <100 (60%)<br>100÷200 (14%) |
| 3              | Tsopelas<br>2001                     | 0,48                        | 4,8 ÷7,7                     | 0,20         | 4,0                  | 3 ÷5        | <50 (20 %)                  |
| 4              | MUCTR                                | 0,60                        | 4,5                          | 0,40÷0,45    | 2,2                  | 2           | 50±20 (100 %)               |
|                |                                      |                             |                              |              |                      |             | 21                          |

### As a result of the work

- visually transparent non-opalescent deionized product,
- not coagulating in saturated solutions of salts (including polyvalent cations) even at long heating up to 100 °C has been synthesized.
- Effective hydrodynamic diameter of the nanoparticles (PCS) is at least 2-3 times more than diameter of the dense core (TEM).
- ♣ Re<sub>2</sub>S<sub>7</sub> nanoparticles are irregular shaped, X-ray amorphous, stabilized by gelatin
- Polydispersity is low: 75% (mass) of the particles have hydrodynamic diameter between 35 to 75 nm.
- Deionized hydrosols can be stored in an inert atmosphere for indefinitely long time (years).
- This work may be helpful in developing synthesis of other metal sulfides hydrosols



